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ABSTRACT : This paper seeks to present ways to eliminate the inherent quantization noise component in
digital communications, instead of conventionally making it minimal. It deals with a new concept of signaling
called the Signal Code Modulation (SCM) Technique. The primary analog signal is represented by: a sample
which is quantized and encoded digitally, and an analog component, which is a function of the quantization
component of the digital sample. The advantages of such a system are two sided offering advantages of both
analog and digital signaling. The presence of the analog residual allows for the system performance to improve
when excess channel SNR is available. The digital component provides increased SNR and makes it possible for
coding to be employed to achieve near error-free transmission.
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I. INTRODUCTION

Let us consider the transmission of an analog signal
over a band-limited channel. This could be possible by two
conventional techniques: analog  transmission, and digital
transmission, of which the latter uses sampling and
quantization principles. Analog Modulation techniques
such as Frequency and Phase Modulations provide
significant noise immunity as known and provide SNR
improvement proportional to the square root of modulation
index, and are thus able to trade off bandwidth for SNR.
However, the SNR improvement provided by these
techniques is much lower than the ideal performance as
shown by the Shannon's capacity theorem [1]. On the
other hand, Digital techniques of transmission can utilize
error correction codes that provide performance close to
theoretical prediction. However, the major disadvantage of
digital transmission techniques is the inherent quantization
error introduced, which is imminent all the while the signal
is relayed. This error causes distortion in the original
signal being relayed and cannot be later recovered by any
means possible. If we quantize the sampled signal using
QAM or any other method, using a fixed number of bits,
a fixed digital distortion is introduced in the developmental
stage itself. This distortion is present regardless of the
transmission quality of the channel being used. Thus the
original signal can be considered to be permanently
impaired. Communications systems are normally
constructed for SNR much higher than the minimum that
is required, so as to leave a margin for fading and other
effects which might

Occasionally reduce the SNR [2]. So, it is essential to
design a communications system where the output SNR
increases as the channel SNR increases. While, as already
stated, this technique is not feasible through digital
modulation, it is an inherent property in analog modulation.

Here, we introduce the concept of Signal Code Modulation
(SCM) which utilizes both the analog, as well as, digital
modulation techniques. The primary analog input signal is
sampled at the appropriate rate and quantized. The digital
samples are denoted by symbols D. The resulting D
symbols are then transmitted using digital transmission
techniques (like QAM) optimized for that channel. Those
D symbols represent N bits per analog input sample.The
quantization residual, which is not left behind, is
transmitted over the noisy channel as an analog symbol
A, corresponding to the digital symbol D, as shown in the
Fig. 1.

To producethe quantization error A, the quantized
data is converted back into analog form and subtracted
from the original analog input signal. This symbol A, for
noise immunity, is amplified by a gain of 2N (or any
proportional factor that will optimize the voltage swing of
the signal with that of the channel). The SCM receiver
performs the opposite operation by combining the D
symbol and its corresponding residual. This would not
bring about significant improvement if transmitted over a
noisy channel as noise could vary the symbol A and cause
bit errors in the D symbols. However, the 2N amplitude
gain of the analog components provides a noise immunity
of 22N to boost the SNR and provide a near ideal scheme
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for error-free transmission.

II. THE SCM TECHNIQUE : AN
ANALYTICAL APPROACH

Suppose we are given a bandlimited signal of
bandwidth B Hz, which needs to be transmitted over a
channel of bandwidth BC with Gaussian noise of spectral
density N0 watts per Hz. Let the transmitter have an
average power of P watts. We consider that the signal is
sampled at the Nyquist rate of 2B samples per second, to
produce a sampled signal x(n). Next, let the signal be
quantized to produce a discrete amplitude signal of M =
2 blevels. Where b is the no. of bits per sample of the
digital symbol D, which is to be encoded. More explicitly,
let the values of the 2b levels be, q1 q2 q3 q4�.. qM
which are distributed over the range [�1, +1],where  is
the proportionality factor determined relative to the signal.
Given a sample x(n) we find the nearest level qi(n). Here,
qi(n) is the digital symbol and x(n) = x(n) � qi(n) is the
analog representation. The exact representation of the
analog signal is given by x(n) = qi(n) + xa(n). We can
accomplish the transmission of this information over the
noisy channel by dividing it into two channels: one for
analog information and another for digital information. The
analog channel bandwidth is Baa = aB and the digital
channel bandwidth being Bd = dB, where Ba + Bd = Bc,
the channel bandwidth. Let  = Bc/B, be the bandwidth
expansion factor, i.e. the ratio of the bandwidth of the
channel to the bandwidth of the signal. Similarly, the
variables a and d are the ratios of Ba/B and Bd/B.  Here
we will assume that a = 1 so that d =  � 1. The total
power is also divided amongst the two channels with
fraction pa for the analog channel and fraction pd for the
digital one, so that pa + pd = 1. The SNR of the channels
is first conveniently defined where no bandwidth
expansion is used
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The SNR of the analog channel is given by:
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And the SNR of the digital channel is given by:
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Of special interest is the case where the signal power
is divided in proportion to bandwidth. This is the case
where the analog and digital channels have the same
spectral density of the transmitted signal. Inferring that in
this case:
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The objective of the communication system is to
transmit the signal x(n) as accurately as possible. In other
words, we want to design the system so as to maximize,

the output SNR of the demodulated signal �( ),x n where the
output SNR is:
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In the following, we calculate the output SNR as the
function of the channel SNR and the bandwidth expansion
factor and plot the corresponding graph.

III. MAXIMUM OUTPUT SNR

Let us consider the best possible SNR that can be
obtained by bandwidth expansion, when we wish to transmit
a signal of bandwidth B through a Gaussian channel of
bandwidth B.

It can be derived using Shannon's capacity theorem
that the formula for capacity of a Gaussian Channel is given
by:

            2log 1C P
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                     ... (6)

While at the demodulator end, we have,

           2 0log (1 )C B SNR                      ... (7)

The two capacities must be equal since both contain
the same information. Equating the two yields:
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The Fig. 2 depicts the Output SNR versus  for
different bandwidth expansion factors.

Fig. 2. Output SNR versus  (channel SNR) for different
bandwidth expansion factors.

IV. PERFORMANCE COMPARISON

SCM offers near ideal communications performance. To
show this is true, let us consider  the role of a
communications link designer who has a noisy transmission
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channel of bandwidth B and limited SNR. Let us choose a
digital link as a first and best choice. Here, the analog
samples are converted to digital with a resolution of b bits
per sample.

According to Shannon's principle of the capacity of a
noisy transmission channel, by using an ideal error
correction coding technique the information can be passed
error free at a bit rate equal to channel capacity, given by
equation (7).

If the analog signal is sampled at a rate of R samples
per second. Then, the number of bits per symbol cannot
exceed b = C/R. Thus M = 2b is fixed and quantization error
is unavoidable. The designer may consider analog
modulation, such as FM, which is known to increase the
output SNR. FM accomplishes this advantage at the
expense of bandwidth increase. FM is inferior to PCM at
the minimum channel SNR. This is because FM suffers from
a threshold phenomenon where the performance decreases
drastically with channel SNR [3].

A. The Ideal SCM

Now let us consider the SCM technique with the mixed
analog/digital link: Assume for the moment that the digital
symbols are transmitted error free. Note: the analog symbol
xa(n) produced by the SCM process described above, has
a smaller variance than the original symbol x(n). Consider
the case when x(n) is a uniformly distributed random
variable. Assuming that x(n) [�, + ]. As there are 2B
symbols/sec and C bits/sec, we have b = C/2B bits per
symbol. Now the analog sample in the range [�, + ] is
not transmitted in full, instead it is divided into M = 2b

equal segments and only one segment consists of the
analog information. This segment is magnified to the range
[�, + ] and transmitted with PAM. The b bits associated
with it are transmitted through the digital channel and
recovered. The receiver in turn will take the analog signal,
shrink it by 2b times and translate it to its original level.
Analytically, the residual xa(n)  2�b[�, + ]. That is to
say, the amplitude of xa(n) is exactly ga = 2b times smaller
than that of the original signal. This means that we can
amplify the analog residual by ga to give it the same size
and power of the original signal.Here, we can define ga as,
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The amplified analog signal gaxa(n) will be transmitted
through the analog channel which has a signal to noise
ratio SNRa. At the receiver, the original signal will be
reconstructed by,

                � � �( ) ( ) ( )i ax n q n x n                 ... (10)

where, �( )x n  is the estimated analog symbol, and � ( )iq n
is the estimated digital symbol, both of which are assumed
to be equal to the transmitted symbol. Because the
transmitted analog symbol was gaxa(n), the received analog

symbol will need to be divided by ga to produce � ( ).ax n
This will reduce channel noise by ga and consequently
improve the SNR experienced by the analog symbol by the
factor of ga

2.

We could conclude that in general,

          SNR0 = ga
2SNRa                            ... (11)

And therefore
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The analog gain of an uniformly distributed input is
ga = 2b and therefore
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Here we can note that, different distributions of the
analog signal lead to different analog gain factors. The gain
is largest for a uniformly distributed input and becomes
smaller as the distribution approaches a Gaussian
distribution. The above result assumes that the digital
symbol is transmitted error-free. However, this is not totally
true. This raises questions, how many bits in the channel
can be transmitted error free? Which leads us to the
Shannon derived capacity of a digital channel, which is
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If we assume that the signal x(t) was sampled at the
Nyquist rate of 2B samples per second, then the number of
bits per sample will be
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Note: The b is a continuous function of the SNR of
the channel, . If we want the number of bits to be integer,
then
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where [x] denotes the integer part of x.

Finally,
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If we assume, that the transit power is allocated in
proportion to the bandwidth, we have
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Fig. 3. Number of bits in a digital symbol as a function of
channel SNR , for an integer no. of bits (solid) and fractional

number of bits (dashed).  = 4

If we allow for fractional bits, the above equation
becomes,
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Figs. 3 and 4 illustrate the performance of the ideal
SCM as given by equation (18). Figure 3 shows how the
bits vary with channel SNR, and figure 4 shows how the
output SNR varies with the channel SNR . Here we can
note that the ideal SCM provides performance, which is
quite close to the bound.

The close match between the SCM performance and
the SNR0 bound can be proved analytically.

For large , the SNR0 bound is

          0 1 1SNR
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              ... (20)

Similarly, for large , the SNR0 of ideal SCM (19)
becomes
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Equation (20) and (21) are the same since, d + 1 = 
For small , the SNR0 bound gives SNR0   , while for
ideal SCM we have SNR0   /.

Fig. 4. The output SNR0 as a function of channel SNR, for the
SNR0 bound (dash), the ideal SCM with integer bits (solid) and

the ideal SCM with fractional number of bits (dash-dot).  = 4.

1. Ideal SCM with Power Optimization

The performance of the SCM technique can be further
improved by adjusting the power allocation between the
analog and digital channels so as to maximize the output
SNR. Figs. 5 and 6 depict the performance of the ideal
SCM for allocation of optimal power, computed by adjusting
pd in equation (17) so as to maximize SNR0.

We see from Fig. 5 that the ideal SCM characteristics
approach that of the Shannon bound for both high and
low input SNR values. Fig. 6 shows the number of bits
used, and the power allocation to the digital channel. These
results can be verified analytically by computing the
optimum value of pd for the case of fractional bits, and
evaluating the corresponding SNR0.

Recalling equation (17) and modifying it by removing
the "[ ]", we get
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Differentiating SNR0 with respect to d, setting the
derivative to zero to find the maximum pd, we get for  > 1.
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While for   < 1, we have pd = 0. Inserting this into
equation (22) we get,  after  some straightforward
manipulations, and using the relation  = d + 1, that for 
> 1.
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It is straightforward to check that for  >>1 and for
 << 1 the output SNR of the ideal SCM  approaches the
Shannon bound.

Fig. 5. The output SNR as a function of channel SNR, for the
ideal case (solid), and the ideal SCM with the integer bits, with

power optimization. ( = 4)

2. Ideal SCM with fixed no. of bits

When the number of bits transmitted through the
channel are fixed, say b = b0. In this case, the analog gain
ga will be fixed, and the output SNR0 will be, SNR0 = 22b0
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/, provided that the digital transmission is error free. This
will occur only when the SNR is larger than some threshold
value 0. Using equation (15) we get
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                       ... (25)

For SNR values below the threshold there will be a
high probability of error and we assume for simplicity that
the output SNR will drop to zero. Though this is an extreme
consideration, in reality, the degradation in SNR0 will be
more gradual.

Fig. 6. The number of bits and the optimal power pd as function
of  for the case shown in Fig. 5.  = 4

Fig. 7 depicts the output SNR as a function of channel
SNR with a fixed number of bits. As expected, the output
SNR increases linearly with  and there is a constant SNR
gain equal to the analog gain ga

2.

Fig. 7. The output SNR as function of channel SNR for the
SNR0 bound (solid), and the ideal SCM with fixed number bits

and  = 4. From bottom to top b0 = 2, 6, 8, 10.

V. PROSPECTIVE APPLICATIONS

1. Broadband Wireless Transmission

An SCM-based communications link is basically a

transparent, band-limited analog pipe with near-ideal
performance in noisy channels. Every analog signal could
potentially use SCM because it can outperform other
existing modulation schemes. However, SCM has a
compelling advantage for  digital communications
applications as well.

For example, SCM can pass digital information by
acting as a repeater of a digital channel. This application
provides a wireless extension of cable modem digital
information. As illustrated in Figure 8, a cable modem
termination system (CMTS) transmits a 42 Mb/s 256-QAM
signal in a 6 MHz cable channel shared among the cable
modems located at the subscribers' premises. The return
upstream path from the cable modems is a 10 Mb/s
16-SQAM signal in a 3.2 MHz cable channel. The signals
are carried by a combination of fiber and coax referred to
as a hybrid fiber/coax (HFC) network.

The fiber delivers a large amount of bandwidth over
long distances with strong noise immunity. Coax cables
distribute the signal between the fiber and each subscriber.
To reach a station located beyond the reach of the existing
HFC network, the cable operator installs an SCM-based
point-to multipoint wireless access system at any point on
the HFC network that has line-of-sight to the unreachable
station. All customers located at a particular site share the
SCM radio located at that site. The subscribers simply use
low-cost cable modems that connect to the SCM radio via
a shared coax cable. The wireless subscribers can even
share the same cable channels with purely wired subscribers
because the wireless link is transparent to the cable
equipment. The significance of SCM in this application is
its ability to take a 256-QAM signal and transport it over a
wireless link suitable only for a lower modulation scheme,
such as 16-QAM. SCM provides significant additional noise
immunity, as is depicted in Figure 2 because it uses
bandwidth expansion to improve the destination SNR.

There is a non-SCM alternative: the 256-QAM signal
could first be demodulated back to the original data bits,
then modulated as 16-QAM, transmitted over the wireless
link, demodulated at the destination, and finally remodulated
using 256-QAM. This alternative would be much more
costly, given the amount of processing required. It would
also add significant latency to the information transported
because an efficient channel must perform the error
correction of the original signal before transmitting it over
the wireless link. Furthermore, because SCM provides a
transparent link that is not sensitive to protocol evolution
or variations, it is more future-proof and versatile than
specific digital standards.

2. Superior Digital Audio Recording and Playback

A new-generation audio CD could include a digital
track identical to and compatible with the existing CD tracks,
and in addition, have an analog track to provide the
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enhanced quantization error. Such an analog track would
provide audio performance that depends on the quality of
the recording and of the disc player. The most discriminating
audio enthusiasts could use the more sophisticated player
for true analog reproduction, while the less discriminating
users would enjoy the low-cost CD technology in its current
format.

Fig. 8. Communication using the SCM technique could increase
efficiency and reliability while reducing interface

and processing costs.
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